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Abstract
The role of the exciton and polariton dispersion and the Pauli statistics in the
properties of exciton–polariton solitons in molecular crystals is investigated.
The formation of bright- and dark-soliton solutions in different regions of the
spectrum is studied.

The formation and propagation of coherent exciton–photon pulses with constant shape
(polariton solitons), considered as self-induced transparency of excitons, were studied in
the early 1970s [1, 2]. Since then, extensive investigations of the properties of polariton
solitons have been carried out [3–8]. Spatial dispersion effects have been studied in [4–6, 9].
The formation of polariton solitons on crystal surfaces [10] and as a result of complicated
interactions [11–15] has been considered. Dispersion effects in the spectra of phonon–polariton
solitons have been studied in detail in [9]. In the present letter we investigate specific dispersion
and non-linear effects in the properties of exciton–polariton solitons in molecular crystals.

We shall consider the interaction of electromagnetic pulses with Frenkel electronic
excitons in cubic molecular crystals with one molecule per unit cell, taking into account
only the ground and the first excited state of the molecule. The exciton Hamiltonian can be
written as [16, 17]

Hex = h̄ω0

∑
n

P †
n Pn −

∑
n,m

VnmP
†
n Pm − A

∑
n,m

P †
n P

†
mPnPm (1)

where h̄ω0 is the intramolecular excitation energy and P †
n (Pn) are the corresponding creation

(annihilation) Pauli operators of an electron–hole pair in the nth molecule. They obey the
commutation relations

[Pn, P
†
m] = (1 − 2Nn)δn,m [Pn, Pm] = 0

P 2
n = (P †

n )
2 = 0 Nn ≡ P †

n Pn
(2)

which combine commutation on neighbouring molecules with anticommutation on one and the
same molecule and prohibit the localization of more than one excitation on a single molecule.
The second term in (1) describes the resonant intermolecular interaction, where Vnm are the
corresponding matrix elements. The intramolecular vibrations usually have narrow energy
bands (|Vnm| � h̄ω0) and hence, in accordance with the Heitler–London approximation, only
terms conserving the total number of the quasiparticles are retained. The term ∼A describes
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the non-linear dynamical interaction between excitations on neighbouring molecules. It has a
different form as compared to the intramolecular anharmonicity term in the case of vibrational
excitations [9], where the two bosons are localized on one and the same molecule. The direct
dynamical exciton–exciton interaction has a quadrupole character and it is usually negative and
much weaker than the resonant intermolecular interaction (|A| � |V |). The excitons however
may also interact in an indirect way, exchanging other quasiparticles such as lattice phonons,
which may result in a considerable increase of the effective non-linear exciton interaction or
even a change of its sign.

In the dipole approximation the Hamiltonian of the interaction of the excitons with the
electromagnetic field can be described in a semi-classical way as follows:

Hint = −d
∑
n

(P †
n E

+
n + PnE

−
n ) (3)

where d is the dipole moment matrix element for transitions from the ground state to the excited
state of the molecule and E+

n (E−
n ) is the positive-frequency (negative-frequency) part of the

macroscopic electric field.
The equation of motion for the operators Pn is

ih̄
∂Pn

∂t
= h̄ω0Pn − (1 − 2Nn)

∑
m

VnmPm − 2APn
∑
m

Nm − d(1 − 2Nn)E
+
n . (4)

In comparison with the case of vibrational excitons [9], equation (4) contains two additional
non-linear terms proportional to the local exciton density Nn, which have statistical nature
associated with the Pauli commutation relations (2). The term proportional to Vnm describes
the so-called kinematical repulsion between excitons on neighbouring molecules. The term
proportional to d describes the dipole moment quenching at high exciton densities.

We shall average equation (4) using a wave-function of the form [3]

|�(t)〉 =
∏
n

(un(t) + vn(t)P
†
n )|0〉 Pn|0〉 = 0 |un|2 + |vn|2 = 1 (5)

which has been successfully applied in the theory of superconductivity to describe macroscopic
coherent states. Note that (5) does not contain non-physical states with more than one excitation
on a single molecule.

With the help of (2) and (5), the following decoupling relations can be established:

〈NnPm〉 = 〈Nn〉〈Pm〉
〈Nn〉 = (1/2)(1 ∓

√
1 − 4|〈Pn〉|2).

(6)

The two signs in (6) correspond to different exciton densities. The upper sign holds for
0 � 〈Nn〉 � 1/2 and the lower sign for 1/2 � 〈Nn〉 � 1. Equation (6) reflects the Pauli
character of the excitations and describes the deviations of the average local density from the
squared modulus of the averaged exciton operators. In the low-density limit (〈Nn〉 � 1) it
yields

〈Nn〉 ≈ |〈Pn〉|2 (7)

which is the usual decoupling relation when the average is taken over Glauber’s coherent
states [18]. As they involve states with arbitrary occupation numbers, they are applicable
to vibrational excitons (bosons) and to low-density electronic excitons which can be approx-
imated by bosons. For higher exciton densities a wave-function of the type (5) should be used,
which does not contain non-physical states with occupation numbers n > 1.

As (6) shows, the average exciton density 〈Nn〉 can deviate dramatically from |〈Pn〉|2, and
in the high-density limit (〈Nn〉 ∼ 1, |〈Pn〉|2 � 1) is given by

〈Nn〉 ≈ 1 − |〈Pn〉|2. (8)
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An inverse behaviour of the density of excitations in the wave-function associated with 〈Pn〉
is observed in this case.

Averaging (4) with the help of (5) and (6) gives

ih̄
∂〈Pn〉
∂t

= h̄ω0〈Pn〉 − (1 − 2〈Nn〉)
∑
m

Vnm〈Pm〉 − 2A〈Pn〉
∑
m

〈Nm〉 − d(1 − 2〈Nn〉)E+
n .

(9)

In what follows we consider the low-density limit (7) and using the notation

〈Pn〉 ≡ αn(t) (10)

equation (9) becomes

ih̄
∂αn

∂t
= h̄ω0αn − (1 − 2|αn|2)

∑
m

Vnmαm − 2Aαn
∑
m

|αm|2 − d(1 − 2|αn|2)E+
n . (11)

We would like to point out that the wave-function (5) and the decoupling relations (6) allow
the description of the dynamics of the electronic excitons by just equation (11), eliminating
the need for a second equation for the exciton number as in e.g. references [3] and [6].

Equation (11) together with Maxwell’s wave equation:(
∂2

∂x2
− 1

c2

∂2

∂t2

)
E+(x, t) = 4πd

c2a3

∂2α(x, t)

∂t2
(12)

constitutes the set which describes the properties of coupled non-linear excitons and photons
(c is the velocity of light and a the lattice constant).

Proceeding as in [9], we shall seek solutions of (11) and (12) in the form

α(x, t) = ei(kx−ωt)ϕ(x, t)

E+(x, t) = ei(kx−ωt)E(x, t)
(13)

where k and ω are the wave vector and the frequency of the carrier wave and ϕ(x, t) and
E(x, t) are real slowly varying functions. Using the semi-discrete and the nearest-neighbour
approximations, which model the exciton dispersion over the whole Brillouin zone, we obtain

ih̄
∂ϕ

∂t
= (εk − h̄ω)ϕ − ih̄vk

∂ϕ

∂x
− V cos ak

∂2ϕ

∂x2
− 4(A− V cos ak)ϕ3 − d(1 − 2ϕ2)E (14)

[(
ω2

c2
− k2

)
+ 2i

(
k
∂

∂x
+
ω

c2

∂

∂t

)
+

(
∂2

∂x2
− 1

c2

∂2

∂t2

)]
E

= 4πd

c2a3

(
−ω2 − 2iω

∂

∂t
+
∂2

∂t2

)
ϕ. (15)

εk and vk are the energy and the velocity of the non-interacting excitons:

εk = h̄ω0 − 2V cos ak vk = 2V a2

h̄
sin ak. (16)

Looking for localized solutions in the form of pulses with constant shape, which depend
on space and time through the running variable ξ = x − vt (v is the velocity of the solitary
wave), and combining (14) and (15), the following non-linear equation can be derived:

χkϕ −Mk

∂2ϕ

∂ξ 2
− Akϕ

3 − iPk
∂ϕ

∂ξ
= 0 (17)
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where

χk = εk − h̄ω − h̄%0ω
2

c2k2 − ω2

Mk = a2(V cos ak + W)

W ≡ [2h̄(c2k − ωv)(vk − v) + (c2 − v2)(εk − h̄ω)− h̄%0v
2]

1

(c2k2 − ω2)a2

Pk = h̄(vk − v) + [2(c2k − ωv)(εk − h̄ω)− 2h̄%0ωv]
1

c2k2 − ω2

Ak = 4(A− V cos ak)− 2h̄%0ω
2

c2k2 − ω2

%0 = 4πd2

h̄a3
.

(18)

In deriving (18), the slowly varying envelope approximation

|∂ϕ/∂x| � kϕ |∂ϕ/∂t | � ωϕ (19)

has been employed and terms up to the second derivative have been kept. The set (17), (18)
determine completely the propagation of coupled exciton–photon solitary waves. Note that
in contrast to the case in [9], the non-linear coefficient Ak is a complicated function of k
and ω. The first term 4A describes the dynamical exciton interaction which has a Coulomb
origin. The second and third terms come from the Pauli statistics of electronic excitons. The
second term −4V cos ak corresponds to a kinematical exciton repulsion, while the third term
∼%0 describes an additional exciton–polariton interaction which has a dipole character. On
the lower polariton branch (kc > ω) it corresponds to repulsion, while on the upper branch
(kc < ω) it yields exciton attraction.

The type of the soliton solutions of equation (17) depends on the sign of the quantity
Mk/Ak . Positive values yield bright-soliton solutions:

ϕ(x, t) = ϕ0 sech
x − vt

L
(20)

h̄ω = εk − Akϕ
2
0

2
− h̄%0ω

2

c2k2 − ω2
L2 = 2Mk

Akϕ
2
0

(21)

while negative values yield dark-soliton solutions:

ϕ(x, t) = ϕ1 tanh
x − vt

L
(22)

h̄ω = εk − Akϕ
2
1 − h̄%0ω

2

c2k2 − ω2
L2 = − 2Mk

Akϕ
2
1

(23)

where 2L is the width of the non-linear formations.
The velocity of the solitons, determined from the condition Pk = 0, is

v = 2c2k(εk − h̄ω) + (c2k2 − ω2)h̄vk

2ω(εk − h̄ω + h̄%0) + h̄(c2k2 − ω2)
. (24)

A simple form of the non-linear interaction coefficient Ak can be obtained if we neglect
the non-linear correction to the soliton frequency in (21) and use the linear polariton dispersion
relation instead:

h̄%0ω
2

c2k2 − ω2
= εk − h̄ω (25)
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which corresponds to χk = 0. Using (18), (25) and (16) we get

Ak = 4A− 2h̄(ω0 − ω) = 4(A− V )− 2h̄(ωT − ω) (26)

whereωT = ω0−2V/h̄ is the transverse exciton frequency at k = 0. The non-linear coefficient
Ak changes sign at ωA = ω0 − 2A/h̄, being negative for ω < ωA and positive for ω > ωA.
The cut-off frequency yields a critical point k1 on the upper branch which falls in the resonance
polariton region (figure 1) and a critical point k3 on the lower branch which is near the middle
of the Brillouin zone.
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Figure 1. Critical points on the exciton–polariton dispersion curves which separate bright-soliton
from dark-soliton solutions. %0 = 0.1ω0, V = 0.2h̄ω0 and A = 0.05h̄ω0. ωT = ω0 − 2V/h̄,
ωL = ωT + %0 and ωA = ω0 − 2A/h̄.

The dispersion coefficient Mk plays the role of an inverse polariton effective mass and
includes the effects of both the polariton-type and the exciton-type dispersion. The polariton-
type dispersion dominates on the photon-like parts of the spectrum and in the resonance region
(|W | � |V |). In these regions Mk is positive on the upper branch (k < ω/c) and negative
on the lower branch (k > ω/c). |W | decreases on the lower branch with the increase of the
wavenumber and the dispersion coefficient Mk vanishes at a critical point k2 which reflects the
change from a polariton-type to an exciton-type dispersion. Mk vanishes again at the middle
of the Brillouin zone at k4 = π/2a, where the exciton effective mass changes sign.

The regions corresponding to bright- and dark-soliton solutions are shown in figure 1. On
the upper branch, dark solitons exist for k < k1 and bright solitons for k > k1. On the lower
branch four regions with solutions of different types are formed: bright solitons exist in the
regions 0 < k < k2 and k3 < k < k4; and dark solitons for k2 < k < k3 and k > k4. Thus in
the low-density limit, bright solitons are formed in the photon-like parts of the spectrum, which
is consistent with the results of [2]. In the high-density limit, according to (8) the solution types
are reversed and dark solitons are formed in the photon-like parts of the spectrum. This is in
agreement with the results of [8] for the case where the initial population inversion exceeds a
threshold value and where the presence of damping limits the spread of the polariton dispersion
curve near the light-line [6, 9].

We would like to point out that the changes of the solution type at k1 and k2 are in the
resonance region and could have practical applications in optical switching devices.

This work was supported in part by the National Science Foundation of Bulgaria under Grant
No F810.
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